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ABSTRACT 

We endow the set of all invariant measures of topologically transitive subsets 
L of certain piecewise monotonic transformations on [0, l] with the weak 
topology. We show that the set of  periodic orbit measures is dense, that the 
sets of ergodic, of  nonatomic, and of  measures with support L are dense 
G6-sets, that the set of strongly mixing measures is of  first category, and that 
the set of measures with zero entropy contains a dense G6-set. 

Introduction 

A map T: [0, 1] ~ [0, 1 ] is called piecewise monotonic,  if there is a finite 
partit ion ~ of  [0, 1] into subintervals, such that T [ Z is continuous and 
monotone for all Z E ~e. Simple examples are unimodal  and monotonic mod  1 
transformations. T is called unimodal,  if it is continuous, if there is a c E (0, 1) 
such that T ] [0, c] is increasing and T ] [c, 1 ] is decreasing, and if T(c) = 1 and 
T(1) = 0. T is called monotonic mod  1, if there is an increasing continuous 
function f." [0, 1 ) ~ R  with T(x) - - f (x )  mod 1 for x ~ [ 0 ,  1) and with T(1) = 
T(1 - ). We consider in this paper only unimodal  maps and monotonic mod  1 
transformations with the additional property that f (0 )E  [0, 1) and f(1 - )  
(1, 2], although one can prove the same results with similar, but more 
complicated methods also for other simple piecewise monotonic  maps, in 
particular for all monotonic  mod 1 transformations. A dynamical system 
(X, T) is a continuous map  T on a compact metric space X. In general, a 
piecewise monotonic  map has finitely many discontinuities. By a slight 
modification (cf. §4 below), it becomes a dynamical system. 
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As we investigate invariant measures of a dynamical system, we can restrict 

ourselves to the center of  the dynamical system, which contains the support of 
all invariant measures. It is known (cf. [6] and [9]) that the center of  unimodal 

and monotonic rood 1 transformations can be written a s  Ul<i~n Li, where 
n < ~ and the Li are topologically transitive with L, M L i = ~ ,  if i ~ j ,  except 
i = n < oo and j -- n - 1. Then this intersection may be finite. It may happen 
that L, has only nonperiodic orbits. It happens, if n = ~ .  Then the results of  

this paper clearly cannot hold for Ln. IfLi is an isolated periodic orbit, then the 
results of  this paper are trivial. The other L~ are exactly those which satisfy 

htov(T [ L~) > 0. For these L, we shall prove Theorem 2 below. If i < n, then L~ 

is isomorphic to a finite type subshift, for which Theorem 2 is already known 

(cf. [1 ]). The new result is that about Ln. 
The method, which was introduced for the investigation of generic proper- 

ties of  invariant measures for axiom A diffeomorphisms, is the specification 

property (cf. §21 of [ 1 ]). For our purposes we propose a weaker form of  the 

specification property in §1 below. Then, in §3, we are able to prove 

THEOREM 1. Suppose the dynamical system (X, T) has the specification 
property defined in § 1. Let U be a nonempty open subset of  the set M(X,  T) o/ 
all T-invariant probability measures on X with respect to weak topology. Then 
the periodic points x E X with mx E U are dense in X, where mx is the 
T-invariant measure concentrated on the periodic orbit of  x. 

In §2 and §4, we show then that this specification property holds for shift 
spaces, which are isomorphic to the dynamical systems (L, T I L), where L is a 
topologically transitive subset of  one of the piecewise monotonic maps we 
consider in this paper, such that htop(T I L) > 0. This gives that the assertion of  
Theorem 1 holds for such (L, T [ L). The same proofs as in [1] and [10] show 
then 

THEOREM 2. Let (L, T I L) be as above. With respect to weak topology we 
have then: 

(i) The set of  measures concentrated on periodic orbits is dense in 
M(L, T IL). 

(ii) The set of  ergodic measures is a dense G6-subset of  M(L,  T [ L ). 
(iii) The set of  nonatomic invariant measures is a dense G6-subset of 

M(L,  T IL). 
(iv) The set of  measures with support L is a dense G6-subset of  M(L,  T [ L ). 
(v) The set of  strongly mixing measures is of  first category in M(L,  T [ L ). 
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(vi) The set o f  measures with zero entropy contains a dense G~-subset o f  

M ( L ,  T]L). 
In fact, all assertions of this theorem except (vi) hold for all dynamical 

systems (X, T) which satisfy the assertion of Theorem 1 and htop(X, T) > 0. 
The proofs are as in [ 1 ]. One needs that for every nonempty open subset U of 
M ( X ,  T)  and every n E N  there is a periodic point x E X  with T~(x) ~ x for 
1 _-<i<n and m x E U .  One gets this from Theorem 1 as follows: As 
htop(X, T ) >  0, there is a y ~ X  such that the points T~(y) for 0 ~ i < n are 
different. One finds open neighbourhoods Qz of T;(y) for 0 < i < n, which are 
pairwise disjoint. Then Np._-0 ~ T-~(Q~) is open and nonempty.  Hence it 
contains a periodic point x with m x ~ U  by Theorem 1. As T~(x )~Qi  for 
0 < i < n, we have Ti(x)  ~ x for 1 _-< i < n. For (iv), even weaker conditions 
are sufficient (cf. (21.11) and (21.12) of [1]). By results of [2] and [3], such 
conditions hold for every topologically transitive (L, T [ L) with htop(T I L) > 
0 of  every piecewise monotonic transformation and not only for simple ones. 
The proof  of(vi) is as in [ 10]. Instead of the results about partitions of axiom A 
diffeomorphisms used there, one can use results of §3 of [3]. 

In §21 of [1] also the sets V r ( x ) =  {m ~ M ( X ,  T): m is a limit point of 
( l /n )  El=-0 t @(x)} are investigated. For example, it is shown that for every 
nonempty closed connected subset V of M ( X ,  T)  there is a dense subset of 
x ~ X  with VT(X)= V, if (X, T) has the specification property. The proofs of 
these results can be modified such that they hold also if one uses the weaker 
specification propery of § 1 of this paper. 

§1. The specification property 

It is not quite easy to give a nice definition of a suitable specification 
property. We choose the following definition, which is adapted to piecewise 
monotonic  transformations. Let (X, T) be a dynamical system, i.e. T is a 
continuous map on the compact metric space X. We denote the distance on the 
metric space X by dist. We call a pair (x, l )E  X × N an orbit segment, think- 
ing that it represents {Ti(x): 0 =  < i < / } .  We suppose that there is a map 
d: X × N × X × N × (0, 1)---N such that the following holds: For finitely 

many given orbit segments (Yo, lo), (Yl, l O , . . . ,  (Yt, lt) and a given ~E(0,  1) 
there exist a periodic point z ~ X and integers Uo = O, ut, • • •, ut, ut + t = P with 
T ' ( z )  = z and ui + li =< u;+i for 0 =< i =< t such that (1.1) and (1.2) below hold, 

where we set (Yt + t, I t + t )  = (Yo, 10): 

(1.1) ui+l-(ui+li)_~d(yi, li, yi+t, li+t,~) f o r O < i  < t ,  
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(1.2) dist(T~,+J(z), TJ(y~))<5 f o r 0 ~ j < l i  and 0=<i < t .  

This definition says that parts of  the periodic orbit of  z approximate the given 

orbit segments well (cf. (1.2)) and that the parts in between are bounded by d 
(cf. (1.1)). For example, such a map d can be shown to exist, if (X, T) is locally 
eventually onto, i.e. if for every open nonempty subset UofXthe re  is an n ~ N 
with Tn(U) = X. Examples of shift spaces, for which d exists, are considered in 

§2. Now we say that (X, T) has the specification property, if d can be defined in 
such a way, that for all x ~ X, for all e > 0, for all 5 > 0, and for all H ~ N, there 

are an integer r and integers 0 = Wo < Ill < Wl  ~ •2 < w2  ~-~ • ° • ~-~ Vr < Wr such 
that (1.3), (1.4) and (1.5) below hold: 

(1.3) w, > H, 

(1.4) ~ (vi - w i - l )  < e w ,  
i = l  

(1.5) d(T~'(x), wi - vi, T~'(x), wi - vi, 5) < e(wi - vi) for 1 _< i < r. 

This definition says that we can partition arbitrary long initial pieces (cf. (1.3)) 
of  the orbit of  any x E Xinto orbit segments (T~,(x), w~ - v,-) with small gaps in 

between (cf. (1.4)), such that these orbit segments behave well with respect to 

the function d (cf. (1.5) and the proof of Theorem 1 in §3). 

§2. Shift spaces defined by a graph 

In this section we show how one can prove the specification property for 

certain shift spaces over a finite alphabet S. Let c¢ be a finite or countable 
irreducible oriented graph (we denote both the graph and the set of  its vertices 
by cg) and let u/: c~ ~ S be a map. The shift space X is then defined as the set of  

all sequences k I / ( C I ) L I / ( C 2 )  • ° ° ~ S  N, where C I C 2  ° • ° is a path in cg. A sequence 
of  vertices Ci E c¢ is called a path if Ci + 1 is a successor of  C~ for i > 1. Clearly X 
is invariant under the shift transformation a. For the graphs we consider in 

this paper, X is also closed. 
Now we define the map d: X X N × X X N × (0, 1) --- N which will enable us 

to show the specification property under certain assumptions. Since q# is 
irreducible, for C, D E c¢ there is a path leading from C to D. Let q ( C ,  D )  be 

the minimum of  the lengths of all these paths. For every orbit segment (x, l) 
there is at least one path C ~ C 2 . . . Q  of length l in c¢, such that 

u / ( C O t P ( C 2 ) . . .  ~P(CI) are the first I symbols of  x. Now assign to (x, l) one of  

these paths CtC2.  • • Cl for which q(Cj,  C~) is minimal. For a given c~ > 0 fix n 
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such that for x, x '  ~ X one has dist(x, x') < c~, if the first n symbols o f x  and x '  
coincide. If(x,  1) and (y, m) are given orbit segments, let Cbe  the last vertex of  
the path of  length l + n assigned to (x, 1 + n) and let D be the first vertex of  the 

path of  length m + n assigned to (y, m + n). Then set d(x ,  l , y ,  m ,  ~ ) =  

n + q ( C , D ) .  Now we show that (1.1) and (1.2) hold. We define z as 

~P(D~)~F(D:)... for some closed path DxDz. • .. That D I D : . . .  is closed, means 
that there is a p ~ N  with Dp+i = D, for all i > 1, which implies T P ( z ) =  z.  

Using the definitions o f n  and q(C,  D), it is easy to check that (1.1) and (1.2) 

hold, if one chooses D I D 2 . . .  as follows: For given orbit segments 

(Yo, lo ) , (yJ~) , . . . ,  (Yt, It), let D~D2. • • be the closed path one gets, if one runs 
through the path assigned to (Y0, 10 + n), then goes on a shortest path to the 

vertex at which the path assigned to (Yl, 11 + n) begins, runs through this path, 

goes on a shortest path to the vertex, at which the path assigned to 0:2, 12 + n) 

begins, and so on, until one runs through the path assigned to (Yt, It + n)  and 
goes back on a shortest path to the vertex, at which the path assigned to 

(Yo, 10 + n) begins. 
Now we can show 

LEMMA 1. Let  (X, or) be a shift space defined by an oriented irreducible 

graph ~ as above. I f  every path CIC2" • • o f  infinite length in ~ satisfies either 

(i) or (ii) below, then (X, tr) has the specification property. 

(i) There are a D ~ ~ and  infinitely many  i ~ N such that D is a successor oJ 

c , .  

(ii) There are an integer c and integers i0<i~ < i 2 < . . .  such that 

ik - ik- ~ "" O0 for  k --" oo and such that for  every k > 0 there is an N ( k )  with 

0 < N ( k )  < k,  an I E N  with ik -- il~tk) -- C < l < ik -- iStk~ + C and a closedpath 

D I D 2 "  "DtDiD2" "DtDiD2""  in ~g with tF(Di)=tF(C~,+ j) for  l < j  < 

ik - i N , k ) -  C. 

PROOF. In order to show the specification property, we define d as was 

done above and fix an x ~ X, an e > 0, a ~ > 0 and an H E N. For t~ we fix an 

n E N as above. By definition of  X, there is a path C~C2. . .  in ~ with 

x = 

Suppose first that (i) holds for the path C~C2. • .. By (i) we find an i such 

that D is a successor of  C~, such that i > H + n and such that n + q(D,  C~) + 

1 < e(i - n). Set r = 1, vl = 0 and w~ = i - n. Then i > H + n implies (1.3). 

Furthermore (1.4) is trivial, since r =  1 and v~ = w  o = 0 .  Because of  

n + q(D,  C1) + 1 < e(i - n) = e w  I we get (1.5) from q(C~, CO < q(D,  C1) + 1, 

which holds, as D is a successor of  Cz, and from d(x ,  w~, x ,  w~, &) < n + 
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q ( C ~ ,  C1), which holds, since ~(COW(C2) ' '  "W(Ci) are the first i = wt + n 

symbols o f  x and hence C~ C2. • • Ci is a possible candidate  to be assigned to 

(x,  wl + n). 

Now suppose that (ii) holds for the path C~6"2. • .. Since ik - ik-~--* oo for 

k --- oo, there is a u > 1 with 

(2.1) n + 2 c  ~ e ( im - i m - ~  - -  n - c )  for  m > u 

and an s with is - n - c > H and with 

(2.2) i,, + ( n  + c ) ( s  - 1) < e(is - n - c). 

Set So = s. I f s j  is defined, set sj+~ = N ( s j ) .  As Sj+l < s j ,  we find an r < s such 

that  s, < u < s,_ ~. Now we set Vk = is, . . . .  and Wk = is,_,, - -  n - -  C for 1 < k < r. 

Since w , . = i s - n - c ,  we get (1.3) f rom i s - n - c > H .  Fur the rmore  

Vk+~ - -  Wk = n + c f o r  1 < k < r - 1 and v~ = is, < i,, hence (1.4) follows f rom 

(2.2), since r < s and w, = is - n - c. Finally for 1 < k < r there is a closed 

path D ~ D z .  • • D t D ~ D 2 .  • • such that 

(2.3) Wk - -  Vk + n < 1 ~ Wk - -  Vk + n + 2 c  

and 

(2.4) ~(Dj)  = ~(Cvk+j) for  1 _--<j _--< wk -- vk + n 

since Wk + n + c = i,,_,, and Vk = i,,_,+, = i,vc,,_~). 

By (2.4) the path D ~ D 2 .  • • D.,,_,, ,+,,  is a possible candidate  to be assigned to 

( T " , , ( x ) ,  Wk - -  Vk + n ) ,  which gives 

(2.5) d ( T ~ * ( x ) ,  Wk - -  Vk, T"*(X) ,  Wk - -  V~,, t~) ~ n + l - -  (w k  - -  Vk + n )  

since D , , , _ , , , + , , + ~ D w , _ ~ + , , + 2 . . . D r  is a path o f  length l -  ( W k - - V k  + n )  f rom 

Dw,-~,_, to D~. By (2.3) we get n + l - (Wk - -  Vk + n )  <= n + 2 c ,  a n d b y  (2.1) we 

get n + 2 c  <= e(i,,, - i m - t  - n - c )  for rn = S , - k ,  since S r - k  > U, i f  k>__- 1. As 

N ( m )  < m - 1, we get n + 2 c  <= e( im - n - c - i,vt,,,)) = e (Wk  - -  Vk), and (1.5) 
follows f rom (2.5). [] 

We conclude §2 with two examples. First consider  the case where ~ is finite. 

This  includes all topologically transit ive finite type subshifts and is essentially 

the case cosidered in [ 1 ] and [ 10]. For  every path o f  infinite length in c# there is 

a C E ~ ,  which occurs infinitely often in this path, as c# is finite. I f  D is a 

successor o f  C, we get (i) o f  L e m m a  1 with this D. Hence  (i) o f L e m m a  1 holds 

for  all paths. 

The  second example we consider  is the/Y-shift ,  whose set o f  invariant  
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measures is investigated in [ 11 ]. Choose n ~ N such that n < fl < n + 1, set 

S = { 0 ,  1 , . . . , n }  and let e ~ e 2 e 3 . . . E S  N be the fl-expansion of  1. If 

e,e~+tei+2. • • is periodic for some i or if  there is an i with e~ = 0 for a l l j  > i, 

then the ]/-shift can be considered as a finite type subshift. Otherwise set 

~g = ( E t , . . .  , E , }  U (A~: i >= 1} and insert arrows from Ai to Ai+l for i > 1, 

f rom E~ to Ej for 1 < i, j < n, from E~ to At for 1 < i < n and from A~ to Ej for 

I < j  < e~ and i ->_ 1. I f  W(E~) = i - 1 for 1 < i < n and W(A,) = ei for i >_- 1, 

then qg and W define a shift space as described at the beginning of  §2, which is 

the/ / -shif t  (cf. [4]). As e, > 0 for infinitely many i, there are infinitely many At, 

which have E~ as successor. I f  C~ C2" • • is a path in ~ ,  then either it contains 

some Ej infinitely often and we have (i) o f  Lemma 1 as above,  or  there a r e j  and 

k with Cj+~ = Ak+ i for i > 0 and C I C 2  ° ° ° contains infinitely many  elements, 

which have E~ as successor. This is again (i) o f  L e m m a  1. 

§3. A property implied by specification 

In this section we prove 

THEOREM 1. Suppose the dynamical system (X, T) has the specification 
property. Let U be a nonempty open subset of M(X, T) and let V be a nonempty 
open subset of X. Then there is a periodic point z E V with mz E U. 

The proof  of  Theorem 1 is adapted from [1]: For  the open subset U of  
M(X, T) we find a/z E M(X, T), an t / >  0 and a finite subset ~ o f  C(X, R), 

such that 

W(u, ~ ' ,  q ) : =  (veM(X,  T): lffdlt - f f d v l  < q v f e ~ }  c U. 

Set F = max{ [[ fll ~: f e ~ } ,  set e = q / (10F + 3) and choose J > 0 and w E X  

such that 

(3.1) dist(x,y) I f ( x ) -  f(y)l <e 

and such that {x EX:  dist(x, w ) <  J} c V. 
Set Sjf(x) = Z[5~ f(T~x ). By the ergodic theorem there is a subset Q of  X 

with/z(Q) - 1 such that for e v e r y f E  =~" there is an f *  E L~ with f f*dlt = f fdlt 
and (1/j)SJ(x)-~f*(x) for all x ~ Q.  Since II f* =< II f i le  --< F, we find a 
finite parti t ion {Qi, Q2,...,  Q,} of  Q such that f *  [ Qi has oscillation < e for 

1 < i < n and for all f e  ~ .  Choose x, E Q,. Then 

[ ~ # ( Q ~ ) f * ( x i ) - S f d # l < t  for a l l f ~  ~ r • 
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We can approximate #(Q~) by q~ E Q  such that for a l l f E ~ "  

(3.2) If f d # - , = l  ~ qJ*(x,) < e  and ,=1 ~ q'= 1. 

Next choose H such that  

~ S J ( & ) - f * ( x i ) ] < e  f o r j - > _ , ,  f o r l _ - < i < n ,  a n d f o r a l l f ~ .  

We apply the specification property to &, where 1 _-< i ~ n, using t > 0, 5 > 0 

and H as above. For  every i we get an integer r = r~ and integers b,  w1 for 

1 _-<j =< rwi th  Wo = 0 _-< vt < Wl -_< v2 < w2 _-< • • • _-< v, < Wr such that  (1.3), (1.4) 

and (1.5) hold. Set x 0 = T~J(&), m 0 = wj - vj and ki = Zf=l mo. Then we have 

the following estimations: 

1 
f*(xi)--~i J ~= <=A + B + C 

where 

B : =  

C : =  

1 
A f*(&) - --  Sw, f(&) < e by (1.3), 

Wr 

Wrj=l  Wrlj=l  /=Wi_ 1 

<=I F ~ (vj--Wj_l)~SF by (1.4), 
W r j= 1 

1 r 1 1 " 

LWrj_~l S m i j f ( X i j ) -  -"~ij ~1 Sm' i f ( x i j )  ~-~ w r - ~ F ~, m o 

IWr 1 L 
Fk~ = - -  ~ (b - wj_OF<=eF by (1.4). 

wrk  i W r j = I 

Using X,."=~ q~ = 1 (cf. (3.2)) this gives for a l l f ~  

(3.3) qif*(xi) - f(xo) <= e(2F + 1). 
i=l i 1 j 

For the next step set D = max d(x, l, y, m, 5), where the max imum is taken 

over all (x, 1), (y, m)G((x  o, mij), (w, 1): 1 _-< i < n, 1 < j  =< r~}. Fix K>D/e .  
Since q~ EQ,  we find integers c and c~ such that  qJk~ = cJc for 1 _-_ i _-< n. Now 
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we apply the definition o f d t o  the following orbit segments: Set t = K ZT= t csr~. 
Set (Yo, 10) = (w, 1) and  then set 

(Yi, li) = (xtj, mlj) for Kc~(l" - 1) < i < KClj and 1 < j  _-< r~, 

(Y~, li) = (x2j, m2j) for KClrl + Kc2(j - 1) < i < Kclrl + Kc2j and 1 < j  < rE 

and so on until 

n - - I  

(Yi, li) = (x,j, rn,j) for K 
sff i l  

n - I  

csr, + Kc,(j - 1 ) < i  <=K Y. c,r, + Kc,j 

and l-_<j_-<r.. 

By definition of  (y~, li) for 1 < i < t and ofc~ and c we get 

r~ t 

(3.4) ~, ~ Smof(xi.i)= ~, c-2 ~ Sm,jf(xo)=--~i~ St, f(Yi). 
i l l  j 1 i ff i l  C j = l  1 

Using also (3.2) and the definition of  ki we get 

n t 

(3.5) K c = K c  ~. q i = K  ~, c i k ,=K ~ ~ cimo= Y. li. 
i f f i l  i f f i l  i = l j = l  i l l  

Fur thermore  the definition of  D implies that 

(3.6) d(yi, li, yi+l, l i+ l , J )<D f o r 0 < i  < t  

where (y, +,, It + 1) = (Yo, lo). 
By the definition of  d there are a periodic point z E X and integers u0 = 0, 

ul . . . . .  ut, ut+~ = p with T°(z) = z and u~ + li < Ui+l for 0 < i =< t such that 
(1.1) and (1.2) hold. By (1.5) and the definition of(yi ,  li) for 1 < i < t we have 

d(yi, li, yi + l, li + ,, J) < eli, i f / ~  0 and i f / 4 :  K Z~-_-I 1 csrs + jChK Where 1 <= h < 
n and 1 < j  < rh, that is if(Yi, li) = (Yi + i, li + 0. Counting the number  of  these i 's 
and using (3.6), (3.2), 10 = 1 < D and the definitions of/i ,  ki, K, ci and c we get 

f rom (1.1) that 

1o+ ~ ( u i + , - u i - l i ) < - - D +  1 +  ~ r, D +  ~ • ( c iK-1 )em  o 
i = 0  i = 1  i l l  j r 1  

< ( 2 +  ~ ~ m i j ) D +  ~ , (c iK-1)ek i  
i f f i l j = l  i f f i l  

=(2+ ki) o+ 
i f f i l  i = l  
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i - - I  i ~ l  

i ~ l  

i - -I  

-- 4ceK. 

Hence we have shown (remark that p = ut + 1) 

t 

(3.7) p -  • l~ < 4ecK. 
i ~ l  

Now we get the following estimations: 

1 ! 1 
-'~ ~ St, f ( y a ) - -  Spf(z) <= A + B + C 

i i p 

where 

l t l t u i + ~ - l f ( T j z )  

' 

l t / - -1  

=<~i=~,;=o y' If(T:Y~)-f(TU'+Jz)l 

1 ! 
< - ~ i ~ l ~ e  by (1.2) and (3.1) 

= e by (3.5), 

B : =  

1 p -  1 t u , + ~ -  I 

= - ~  2 f (T 'z)  - ~, f (T 'z)  
j ~ 0  i=1 j=ui 

= p -  li 
i=1  

_-< 4eF by (3.7), 
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C : =  --~ Spf(z) - ~ Spf(z) 

~ - pF 

F 
= - ~ l P  - c K I  

5( - p -- l, by (3.5) 
i~ l  

<-_ 4eF by (3.7). 

This together gives for all f E  o~ 

1 ' _l_spf(z)[ Sj, f(y,) =< (8F + 1)e. (3.8) c-K i~, p 

NOW we put (3.2), (3.3) and (3.8) together, where we use (3.4) and get for all 

f ~ r  

f f d l t - l s p f ( z )  <(lOF + 3)e=q. 
P 

This implies that mz ~ W(p, ~' ,  ~/) c U. Furthermore dist(z, w) < 8 by (1.2), 

since we have chosen (Y0, 10) = (w, 1). Hence z E V by the choice of  8. This 

proves Theorem 1. 

§4. Unimodal  and monotonic mod 1 transformations 

We summarize first some results which are shown in [2] and [3]. Let (X, T) 

be a piecewise monotonic dynamical system as introduced in [3], that is, the 

totally ordered set X has a finite partition &~ into closed-open intervals such 

that T ] Z is monotone and T(Z) is again an interval for all Z E ~e. If  one has a 

piecewise monotonic map Ton  [0, 1], i.e. there are points co - 0 < ct < • • • < 

cn = 1 such that T [ (ci, ci + 1) is continuous and monotone for 0 < i < n, one 
> W has to substitute all y E (0, 1) with Tk(y) = C~ for some i and some k = 0 by t o 

points y - and y + and to extend T continuously with respect to the order 

topology, in order to get a piecewise monotonic dynamical system as defined 

above. These countably many points, which are added, can contain only 

finitely many periodic points, so that the validity of  the assertion of  Theorem 1 
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for an invariant subset of  ([0, 1], T) with no isolated points is not affected by 

this construction. We number the elements of  ~e according to their order in X 

such that ~e = {Z~, Z2, • • •, Zn } and Z i  = [ c i -  1 + ,  c~ - ]. The symbolic expan- 
sion ~o: X---- S N, where S = { 1, 2 , . . . ,  n } is defined as 

~ ( x )  = x ~ x 2 x 3 "  • ",  where x~ is such that T ~- ~(x)E Zx,. 

Since the elements of  ~e are closed, Y : =  ¢(X) c S N is closed. Furthermore 

o T = tr o ~. Hence Y is tr-invariant and (Y, tr) is a shift space. If  ~ is a 

generator then (X, T) and (Y, tr) are topologically isomorphic. Hence it 

suffices to show the specification property for topologically transitive subsets 

¢(L) of  (Y, a), where L is one of  the topologically transitive subsets of  (X, T) 

described in the introduction. If  ~r is not a generator, then ~ collapses certain 

intervals to single points. But one easily shows that the assertion of  Theorem 1 

holds for a topologically transitive subset L of  (X, T), if it holds for the 

corresponding topologically transitive subset L'  :=  ~(L) of  (Y, tr), since for 

every ~ > 0 there are only finitely many periodic points z E Y such that the 

interval q~-~({z}) has length > ~. So it suffices also in the case, where ~e is not 

a generator, to consider (Y, tr) instead of (X, T). 
For a piecewise monotonic dynamical system (X, T) there exists an oriented 

graph 9 and a map W: 9 ---- S such that Y is the set of  all W ( C O t F ( C 2 )  • • . ,  

where C ~ C 2 .  • • is a path in 9 .  (In some of the papers we cite, the elements of  S 

are not assigned to the elements of  9 ,  but to the arrows in 9 .  This makes no 

difference.) For a topologically transitive subset L '  of  Y with positive entropy, 

which corresponds to one of  the topologically transitive subsets L of  (X, T) 

considered in the introduction, there is an irreducible subset ~ of  9 ,  such that 

L '  is the set of all W(C~)W(C2). • . ,  where Cl C2- • • is a path in ~ .  Irreducibility 

of  ~g means here, that for all C, D E ~ there is a path from ~ to D and that 

every subset of  9 containing ~ strictly does not have this property (cf. 

theorem 11 of  [3]). Hence in order to prove Theorem 2, it suffices to show that 

every path in ~ satisfies either (i) or (ii) of  Lemma 1, where ~ is an irreducible 

subset of  the oriented graph 9 of  one of  the transformations considered in 

Theorem 2. We do this in the rest of  this section. 

By Theorem 1 of[6], the oriented graph 9 o fa  unimodal map is either finite, 

a case considered at the end of  §2, or 9 = {A~: i > 1} and there is a sequence 

(r~)~_>_~ of integers > 1 with r~ = 1 such that we have the following arrows in 9 ,  

where Rj = rl + r2 + • • • + r/ 

(4.1) A i---~Ai_ 1 for i > 1, ARj ~A,j  fo r j  > 1. 
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Let ele 2 • • • ~ ( 1 ,  2} N be the symbolic expansion ¢(1) of  1. Set ~F(A~) -- e~ for 

i ->_ 1. This gives then the shift space (Y, a) (cf. [6]). We need two more facts 

about the sequence (ri)izl (cf. (2.3) of  [6] and lemma 1 of  [5]). I f  k _-> 1 then 

(4.2) eR~+l+j ---- ej for 1 ~ j  < rk+l -- 1 

and if  we set R0 = 0, we have for i _-> 1 that 

(4.3) there is a P ( i )  with r~ = Re,) + 1 and 0 _-< P ( i )  ~ i - 1. 

Now we consider an irreducible subset cg of  9 .  By (4.1) there are u < v < oo 

such that  ca = {Ai: u < i < v }. I f  v < oc then cg is finite, a case we have 

considered at the end of  §2. Hence we assume v = oc. Then by (4.1) there is a 

path from every D E ~ to cg. By definition of  irreducibility, we get for D E 

that  

(4.4) i f  there is a path from ~ to D then D E ~ .  

We apply Lemma 1. To this end let C ~ C 2 . . .  be a path in ~ .  Choose 

i0 < il < i2 < • • • such that Cio, C~ , , . . .  are all elements of  {ARj: j > 1 }, which 

occur in C ~ C 2 . . . .  By (4.1) and (4.3), for every k there is a j such that  

Cik+lCik+2...Cik+, is ARj+~ARj+2"''AR,÷: In particular, i i + l - i i = r j + t .  I f  

i k+~-  ik does not tend to oo, then there is a t ~ N  with ik+~-  ik = t for 

infinitely many  k. But then At is a successor of  C~,+, = AR,+, for these infinitely 

many  k by (4.1) since rj + ~ = t. By (4.4) we get At E ~ ,  and (i) o f  Lemma 1 holds 

with D = At. 
Therefore, if(i) o f L e m m a  1 does not hold, we have ik+~ -- ik ---" ~ for k --" ~ .  

We shall show that  for every j with AR,+,E c~ there is a closed path 

DtD2.  • .D,,÷,DID2. • • in ~ with 

(4.5) qJ(Dm)=Ul(AR,+l+m) for 1 < m  < r j + , -  1. 

As for every k there is a j with C~,_,+2C~_,+3. • • C~, = ARj+2AR~+3- •-ARj+, and 

AR~+~ = C~, E c~, this gives (ii) of  Lemma 1 for c = 1, 1 = rj + ~, N ( k )  = k - 1 for 

all k, and for the sequence ( i / +  1)k ~0 instead of  (ik)k => 0. 

It remains to show (4.5). Set u = P(j  + 1), that  is, rj + ~ = R~ + 1 by (4.3), and 

set D I D  2. • .D~÷, =AR,+2"  " "AR,+/L,+," • "AR,+I. We have ru+l <R, ,  + 1 by 

(4.3). Hence DtD2.  • .D,,+~D~D2. • • is a closed path by (4.1), which is in ~ by 

(4.4), since Ar,+, = AR.+~ is a s u c c e s s o r  OfAR~+I ~ c6~ (cf .  (4 .1 ) )  and hence there is 

a path from ~ to every Dg. Furthermore,  by definition of  W and by (4.2) we get 

W(A~,+~+~)=em for l_-<m<_-r~+~-I  and t F ( A m ) = e m  for r ~ + ~ < m  < 

R~ + 1 = rj+l. Hence q~(Dm) =em for 1 _-< m _-< rj+l. Similarly one gets 



Vol. 59, 1987 INVARIANT MEASURES 77 

W(AR,+t+,,) = e , ,  for 1 ~ m < r j + l -  1 and hence (4.5) follows. This finishes 

the p roof  o f  Theorem 2 for unimodel  maps. 

Now we consider  the map  T ( x )  = f ( x )  mod  1 on [0, 1), wheref i  [0, 1) ---- R is 
inceasing, f ( 0 ) E [ 0 ,  1) and f ( l  - ) E ( 1 ,  2]. In this case the shiftspace (Y, a) 

in t roduced above is de termined by a = ata2a3 . . . .  q~(0) and b = blb2b3 . . . .  

q,(l - ) (cf. (1.2) o f  [9]). We can exclude that aka = b or that akb = a for some 

k .  I f t rka  = b, we cancel f rom (Y, a)  the set UY=0 a - k ( a } ,  which is wandering 

except the orbit  of  a,  if  a is periodic. In this case the orbit  o f  a is isolated (cf. 

Lemma 8 of  [9]). Hence  we have not changed the topologically transitive 

subsets L ,  which we consider. By this we get a shiftspace (Y', a)  o f  the same 

form as (Y, 6) de termined by 

a'  = a,a2.  • . ak -12a la2 .  • .ak_12ala2.  • • and b'  = b. 

Similar arguments apply i f a k b  = a.  assuming aka 4: b and akb 4: a for all k, by 

theorem 1 of  [9] the or iented graph ~ is given by {Ai, Bi: i > 1 }, and there are 

sequences (rt)t~.l and (Si) i>__1 of  integers > 1, such that we have the following 

arrows in 9 ,  where we set Rj = rl + r2 + • • • + rj and Sj = s~ + s2 + • • • + sj: 

A,---" Ai+ 1 Bt ~ Bi+ 1 for i > 1, 

(4.6) 
An,---~Brj, Bsj---'A~j f o r j  >= 1, 

The shift space (Y, a)  is then given by W: ~ --- {1, 2} N, where 

(4.7) V?(At) = at, ~(Bt)  = bt for i >= 1. 

By (1.3) and (1.4) o f [9 ]  we know f o r j  _-> 1 

an~+¿+i = bi for 1 _-<j _-< rj+l -- 1, 

(4.8) bs,+l+i = ai for 1 _--<j ___< Sj+l -- 1. 

For  i > 1, l emma 1 of  [7] says, where we set R0 = So = 0, 

there is a P ( i )  >= 0 with rt = Se(o + 1, 
(4.9) 

there is a Q ( i )  >= 0 with st = RQ( o + 1. 

The irreducible subsets ~ of  ~ are investigated in [9]. Six cases are 

considered there. Cases (b) and (d) occur only if  aka = b or akb = a for some k, 

a ease which we can exclude. In cases (c), (e) and (f), ~ has only finite 

irreducible subsets, which we have already considered in §2. So ease (a) 

remains. In this ease there is only one infinite ~ ,  for which there are u, v ~ N  
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such that ~ = {At, Bj: i > u, j > v }. For  this ~g we get for D U ~ in the same 

way as for unimodel  maps that  

(4.10) i f  there is a path from cg to D then D E cg. 

Now we can show the assumptions o f  Lemma 1. To this end let C~ C~. • • be 

a path in cg. Choose i0 < il < • • • such that  C~, C~,, . . .  are all elements of  

{ARj, B s / j  > 1 }, which occur in C~ C2. • .. By (4.6) and (4.9), for every k there is 

a j such that C~+IC~k+2...Ci~+, is either ARj+~ARj+2...AR~+, or 

Bsj+ ~Bsj+ 2 " " " Bs~+,. In particular ik  + 1 - -  ik  ---- r j + l  or ik+l - -  ik  = Sj  + l .  I f  ik+~ - ik  

does not  tend to infinity, then there is a t E N with ik + a - ik = t for infinitely 

many  k. Then there are infinitely many k such that ik+l -- ik = rj+l = t (or 

ik +1 -- ik = Sj +1 = t)  and hence by (4.6) Bt (or At)  is a successor of  C~+, = AR,+, 

(or C~+, = Bs,+,) for these infinitely many k. By (4.10), Bt E ~ (orAt E ~ )  and 

(i) of  Lemma 1 holds with D = Bt (or D = At) .  

Therefore, i f  (i) of  Lemma 1 does not hold, we have ik -- i k -  I ~ ~ .  Suppose 

C,~_, + 1C~,_, + 2" ' "  C,~ = ARj+ ~A~,+ ~ . . . A g , , .  I f  it is Bs~+ iBs~+ ~ ' "  Bs,~ the proof  is 

analogous. We shall find a closed path D I D o . . . D g ) ~ D ~ . . .  in cg such that  

either 

(4.11) l = r j + t  and tF(Dm)=UL(ARj+I+m) f o r l < m < r j + l  

o r  

(4.12) I = R j + , + I  and °d (Dm)=~g(Am)  f o r l < m < R j + ~ .  

We show that  then (ii) of  L e m m a  1 holds for the sequence (ik + 1)k >= 1 instead of  

( ik)kal  and with c = 1 + R u ,  i f  Cio+I =AR.+I, and with c = 1 +Su ,  i f  C~o+l = 
Bs.+ i. If(4.11) holds, we set N ( k )  = k - 1 and get (ii) o f L e m m a  1 from (4.11), 

as c >= 1 and l = rj +1 = ik - ik-1.  Now assume that  (4.12) holds. We consider 

first the ease where an N ( k )  < k - 1 exists such that  

C/ . . . . .  +1'""  C~_. =ARj_.+I"" "ARj_.., for 0 < m ~ k - N ( k ) - 2 ,  

Ci~,~,+l" " " C~,~,+, = Bs.+l" " "Bs.+, for some n. 

As ARj_~+,,~,+2+I = C~,~k,+,+l is a successor of  Bs.+, = Ci,,k,+,, we get s,+l = 

Rj-k+U~k)+Z + 1 by (4.6). A s W ( B s . + I + I )  = bs.+l+m = a,, = W(Am) for 1 _-< m _-< 
s , + ~ -  1 by (4.7) and (4.8), we get by (4.12) that  ° l ( D m ) =  W(C~,,,,+~+=) for 

1 < m < R j  + l = ik  - -  iu~k) -- 1. This implies (ii) o f  I .emma 1, as c _-> 1. That  

N ( k )  does not exist, means that j >_- k - 1 and that  

C~ . . . .  +1"".  C~,_. =AR,_.+I"" .Asj_.+, for 0 < m < k -  1. 
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In this case we set N ( k )  -- 0 and use the closed path 

D,,_,+,+I" " D , , , + , D I "  " "D,,_,+IDR,_,+,+I" " .  

Then (4.12) implies (ii) of  Lemma 1, as Cio+l = Anj_,+,+l gives c = Rj-k+l  + 1, 

as I =R:+~ + 1, and as i k -  iN,k)--- ik-- i 0 = R j + l - R j - k + V  

It remains to show the existence of  a closed path D~D2.  • • DtD~D~.  • • in ~¢ 

such that  either (4.1 l) or (4.12) holds. We suppose first that there is a t > j + 1 

with 

(4.13) r j + m = r j + l  f o r l < - _ m ~ t - j  and r t + t < r j + t  

and show that  (4.11) holds. Set n = Q ( P ( t ) ) ,  that is, Sect) = 1 + R ,  by (4.9). By 

lemma 2 of[8] and by (4.13) we have r ,+l  <--_ rt+l < r j + l  = rt. Set 

l = ri+l = rt and D1. • .Dl =AR,+1" • .AR.+,Br.÷,. • .B~,_I. 

Then D I D 2 .  • • D tDID2 .  • • is a closed path by (4.6), as rt - 1 = Sect) (cf. (4.9)), as 

R ,  + 1 = sect), and as r, + 1 --< rt - 1. By (4.6) there is a path from ARj+, = Cik ~ 

to AR,+, as t + 1 > j  + 1, and Br,.~ is a successor of  AR,+,. Since r, + ~ =<_ rt + L =<- rt - 

1, there is an m with 1 _-_ m _-< l a n d  Br,+, = Din. Hence there is a path from ~ to 

one and hence to all Di. By (4.10) we get Di ~ ~ for all i. Now we show (4.11), 

that  is, U/(D,,)=~(AR,+I+,,)  for 1 _--<-m < r / + l .  This follows from 

Ud(AR.+l+m) = aR.+m+l = bm for 1 =< m ___< r,+l - 1, which holds by (4.7) and 

(4.8), from W(Bm)= bm for r ,+l ___< m < r t  = rj+l, which holds by (4.7), and 

from W(ARj+I+m) = aR,+l+,, = b m  for 1 < m < rj+l, which holds by (4.7) and 

(4.8). 

Now we suppose that  (4.13) does not  hold. Set n = P(/' + 1) and suppose 

s, +1>_- 1 + Rj+ 1- I f  s, +1>  1 + Rj+,, the requirements of  Lemma 3 of  [8] are 

satisfied using also the contrary of  (4.13). I f  S,+l = 1 + R j + I ,  that  is, 

Q ( n  + 1) = j  + 1, then P ( Q ( n  + 1)) = n by definition o f n .  By lemma 2 of[8], 

there is a u < ~ with s, + 1 + ~ = s, + ~ for 1 _< i < u and s, + 1 + u > s, + u, if  u < or. 

Together with the contrary of(4.13) we get again the requirements of  lemma 3 

of  [8]. Hence, if  S,+l > 1 +Rj+1,  this lemma implies that  r j + i ~ r / + ,  and 

s ,+~>-_s,+l  for all i _-__ 1. Then, by (4.6), there is no arrow from c~, .=  

> 1} ~ \  ~ ' .  {A~, B,,: i >_- R~ +1 + 1, m = S, + to Fur thermore  AR,, = C,, E 

~ \  ~ ' ,  hence ~ \  ~ ' ~  ~ .  This contradicts the irreducibility o f  ~ .  Hence 

S,+l < 1 + R j + t ,  which implies s,+~ < 1 + R j  by (4.9). Now we can show 

(4.12). Set 

l = 1 +Rj+1 and OLD2"" "Dr--B~%+2"" "Bs .+ ,As .÷ , ' "AR , ,Br ,+ , .  
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Then D I D  2 • • • DtD~D~. • • is a closed path, as sn + 1 --< 1 + Rj = Rj + ~ and n = 

P ( j +  1), that is, rj+~= I + S n  by (4.9). By (4.10), this path is in cg, as it 

contains ARj+, ---- C~, E ~ .  It remains to show that W(Dm) = W(A,,)  for 1 _-< m =< 

Rj+~. This follows from ~F(Bs~+m+l)=bs,+m+l  = a m  = ~F(Am) for 1 < m _-< 
s,  + ~ - 1, which holds by (4.7) and (4.8). This completes the proof  o f  (4.12) and 
also the proof  o f  Theorem 2. 
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