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ABSTRACT

We endow the set of all invariant measures of topologically transitive subsets
L of certain piecewise monotonic transformations on [0, 1] with the weak
topology. We show that the set of periodic orbit measures is dense, that the
sets of ergodic, of nonatomic, and of measures with support L are dense
Gs-sets, that the set of strongly mixing measures is of first category, and that
the set of measures with zero entropy contains a dense G;-set.

Introduction

A map T:[0, 1]1—[0, 1] is called piecewise monotonic, if there is a finite
partition & of [0, 1] into subintervals, such that T’ | Z is continuous and
monotone for all Z € & Simple examples are unimodal and monotonic mod 1
transformations. 7 is called unimodal, if it is continuous, if thereisa ¢ €(0, 1)
such that T | [0, c]isincreasing and T | [c, 1]1is decreasing, and if T(c) = 1 and
T(1)=0. T is called monotonic mod 1, if there is an increasing continuous
function £ [0, 1)— R with T(x) = f(x) mod 1 for x €[0, 1) and with 7'(1) =
T(1 —). We consider in this paper only unimodal maps and monotonic mod 1
transformations with the additional property that f{0)€[0, 1) and f(1 —)€&E
(1, 2], although one can prove the same results with similar, but more
complicated methods also for other simple piecewise monotonic maps, in
particular for all monotonic mod 1 transformations. A dynamical system
(X, T) is a continuous map 7 on a compact metric space X. In general, a
piecewise monotonic map has finitely many discontinuities. By a slight
modification (cf. §4 below), it becomes a dynamical system.
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As we investigate invariant measures of a dynamical system, we can restrict
ourselves to the center of the dynamical system, which contains the support of
all invariant measures. It is known (cf. [6] and [9]) that the center of unimodal
and monotonic mod 1 transformations can be written as U, <, <, L;, where
n = o and the L, are topologically transitive with L, N L; = &, if i # j, except
i =n <o andj = n — 1. Then this intersection may be finite. It may happen
that L, has only nonperiodic orbits. It happens, if n = co. Then the results of
this paper clearly cannot hold for L,. If L;is an isolated periodic orbit, then the
results of this paper are trivial. The other L; are exactly those which satisfy
ho(T | L))> 0. For these L, we shall prove Theorem 2 below. If i <n, then L;
is isomorphic to a finite type subshift, for which Theorem 2 is already known
(cf. [1]). The new result is that about L,.

The method, which was introduced for the investigation of generic proper-
ties of invariant measures for axiom A diffeomorphisms, is the specification
property (cf. §21 of [1]). For our purposes we propose a weaker form of the
specification property in §1 below. Then, in §3, we are able to prove

THEOREM 1. Suppose the dynamical system (X, T) has the specification
property defined in §1. Let U be a nonempty open subset of the set M(X, T) of
all T-invariant probability measures on X with respect to weak topology. Then
the periodic points x€X with m,€U are dense in X, where m, is the
T-invariant measure concentrated on the periodic orbit of x.

In §2 and §4, we show then that this specification property holds for shift
spaces, which are isomorphic to the dynamical systems (L, T I L), where Lisa
topologically transitive subset of one of the piecewise monotonic maps we
consider in this paper, such that 4, (T | L) > 0. This gives that the assertion of
Theorem 1 holds for such (L, T | L). The same proofs as in [1] and [10] show
then

THEOREM 2. Let(L,T | L) be as above. With respect to weak topology we
have then:

(1) The set of measures concentrated on periodic orbits is dense in
M(L,T|L).

(ii) The set of ergodic measures is a dense Gy-subset of M(L, T | L).

(iii) The set of nonatomic invariant measures is a dense Ggsubset of
M(L,T|L).

(iv) The set of measures with support L is a dense Ggsubset of M(L, T [ L).

(v) The set of strongly mixing measures is of first category in M(L, T | L).
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(vi) The set of measures with zero entropy contains a dense Gysubset of
M(L,T|L).

In fact, all assertions of this theorem except (vi) hold for all dynamical
systems (X, T) which satisfy the assertion of Theorem 1 and A, (X, T)> 0.
The proofs are as in [1]. One needs that for every nonempty open subset U of
M(X, T) and every n €N there is a periodic point x €X with T7(x) # x for
1=i<n and m,€U. One gets this from Theorem 1 as follows: As
hoo(X, T)> 0, there is a y €EX such that the points T"(y) for 0 =i <n are
different. One finds open neighbourhoods Q; of T#(y) for 0 =i < n, which are
pairwise disjoint. Then (M’ T/(Q;) is open and nonempty. Hence it
contains a periodic point x with m, €U by Theorem 1. As T'(x)E€Q, for
0=i<n, we have T?(x) # x for 1 <i <n. For (iv), even weaker conditions
are sufficient (cf. (21.11) and (21.12) of [1]). By results of [2] and [3], such
conditions hold for every topologically transitive (L, T’ | L) with h,(T | L)y>
0 of every piecewise monotonic transformation and not only for simple ones.
The proof of (vi) is as in [10]. Instead of the results about partitions of axiom A
diffeomorphisms used there, one can use results of §3 of [3].

In §21 of [1] also the sets Viy(x)={mEM(X,T): m is a limit point of
(1/n) 272y 14} are investigated. For example, it is shown that for every
nonempty closed connected subset V of M(X, T) there is a dense subset of
X EX with Vy(x) =V, if (X, T) has the specification property. The proofs of
these results can be modified such that they hold also if one uses the weaker
specification propery of §1 of this paper.

§1. The specification property

It is not quite easy to give a nice definition of a suitable specification
property. We choose the following definition, which is adapted to piecewise
monotonic transformations. Let (X, T) be a dynamical system, i.e. T is a
continuous map on the compact metric space X. We denote the distance on the
metric space X by dist. We call a pair (x, /)€ X X N an orbit segment, think-
ing that it represents {77(x):0 =i </}. We suppose that there is a map
d: X X NX X XNX(0,1)=N such that the following holds: For finitely
many given orbit segments (yo, k), 1, 1)), - - ., (1, ;) and a given 6 €(0, 1)
there exist a periodic point z € X and integers 4, =0, u,, ..., 4, 4, = p with
TP(z)=zand u; + [, = u;,, for 0 =i = t such that (1.1) and (1.2) below hold,
where we set V41, L +1) = 0o, bo):

(1.1) Ui — W+ 1) =dW, b, Yivrs L, 6) for0=i=1,
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(1.2) dist(T%%(z), T'(y;))<d for0=j</l and 0=i=t.

This definition says that parts of the periodic orbit of z approximate the given
orbit segments well (cf. (1.2)) and that the parts in between are bounded by d
(cf. (1.1)). For example, such a map d can be shown to exist, if (X, T') is locally
eventually onto, i.e. if for every open nonempty subset U of X thereisan n €N
with T"(U) = X. Examples of shift spaces, for which d exists, are considered in
§2. Now we say that (X, T) has the specification property, if d can be defined in
such a way, that for all x € X, forall ¢ > 0, for all § > 0, and for all H €N, there
are an integer r and integers 0 =wy = v, <w, =V, <w, = -+ . = v, <w, such
that (1.3), (1.4) and (1.5) below hold:

(1.3) w, = H,

r

(1.9) T i—wo)<ew,

i=1
(15) d(r’(X), W, —V;, Tvi(-x)’ W, — v, 6)<8(W,- _V,-) fOI'l §l=_<—r

This definition says that we can partition arbitrary long initial pieces (cf. (1.3))
of the orbit of any x € X into orbit segments (7"(x), w; — v;) with small gaps in
between (cf. (1.4)), such that these orbit segments behave well with respect to
the function d (cf. (1.5) and the proof of Theorem 1 in §3).

§2. Shift spaces defined by a graph

In this section we show how one can prove the specification property for
certain shift spaces over a finite alphabet S. Let € be a finite or countable
irreducible oriented graph (we denote both the graph and the set of its vertices
by €) and let ¥: € — S be a map. The shift space X is then defined as the set of
all sequences W(C)¥(C,)- - - €SN, where C,C;- - - is a path in €. A sequence
of vertices C; € € is called a path if C, | is a successor of C; fori = 1. Clearly X
is invariant under the shift transformation o. For the graphs we consider in
this paper, X is also closed.

Now we define the map d: X X N X X X N X (0, 1) — N which will enable us
to show the specification property under certain assumptions. Since € is
irreducible, for C, D € € there is a path leading from C to D. Let ¢(C, D) be
the minimum of the lengths of all these paths. For every orbit segment (x, /)
there is at least one path C,C,---C, of length / in %, such that
Y(CHY(Cy) - - -W(C,) are the first [ symbols of x. Now assign to (x, /) one of
these paths C,C,- - - C, for which ¢(C,, C)) is minimal. For a given 6 > 0 fix n
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such that for x, x' € X one has dist(x, x') <d, if the first n symbols of x and x’
coincide. If (x, /) and (y, m) are given orbit segments, let C be the last vertex of
the path of length / + n assigned to (x, / + n) and let D be the first vertex of the
path of length m + n assigned to (v, m + n). Then set d(x,l,y, m,d)=
n + q(C, D). Now we show that (1.1) and (1.2) hold. We define z as
W(D)¥(D,)- - - for some closed path D\ D, - -. That D,D,- - - is closed, means
that there is a pEN with D,,,; = D, for all i = 1, which implies 77(z) = z.
Using the definitions of # and q(C, D), it is easy to check that (1.1) and (1.2)
hold, if one chooses D,D,--- as follows: For given orbit segments
0o 10):0n 1), ..., (0, 1), let DD, - - - be the closed path one gets, if one runs
through the path assigned to (3, [, + #), then goes on a shortest path to the
vertex at which the path assigned to (3, /, + n) begins, runs through this path,
goes on a shortest path to the vertex, at which the path assigned to (y,, [, + n)
begins, and so on, until one runs through the path assigned to (y,, /, + n) and
goes back on a shortest path to the vertex, at which the path assigned to
(o, Iy + n) begins.
Now we can show

LEMMA 1. Let (X, ¢) be a shift space defined by an oriented irreducible
graph € as above. If every path C,C,- - - of infinite length in € satisfies either
(i) or (ii) below, then (X, ¢) has the specification property.

(i) There are a D € € and infinitely many i €N such that D is a successor of
C;.

(ii) There are an integer ¢ and integers iy <i,<i,<<-.-+ such that
iy — ix_y— oo for k — o and such that for every k >0 there is an N(k) with
0= N(k)<k,anlEN with i, — iygy— ¢ =1 =iy — iyg) + ¢ and a closed path
D\D,---DDD;---DD\D,--- in € with ¥(D;})=Y¥(C,,+,) for 1=j=
iy — Iyay—C.

Proor. In order to show the specification property, we define d as was
done above and fix an x€X,ane¢>0,ad >0 and an H €N. For J we fix an
n€N as above. By definition of X, there is a path C,C,-:- in € with
x =W(C)Y(C)---.

Suppose first that (i) holds for the path C,C,- - -. By (i) we find an i such
that D is a successor of C;, such that i = H + n and such that n + ¢(D, C)) +
1<e(@—n).Setr=1,v,=0and w, =i —n. Then i = H + n implies (1.3).
Furthermore (1.4) is trivial, since r=1 and v, =w,=0. Because of
n+q(D,C)+ 1<e(i —n)=c¢ew, we get (1.5) from ¢q(C;, C)) = q(D, C)) + 1,
which holds, as D is a successor of C;, and from d{x, w, x,w;,d)=n +
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q(C;, C)), which holds, since ¥(C\)¥(C,)- - -¥(C,) are the first i=w, +n
symbols of x and hence C,C,- - - C; is a possible candidate to be assigned to
(x,w; +n).

Now suppose that (i1) holds for the path C,C,- - -. Since i, — i, _, —~ oo for
k — oo, there is a u = 1 with

2.0 n+2c=¢e(i,—ip_—n—c) formzu
and an s with i; — n — ¢ = H and with
2.2) L, +m+c)s—D=e@i;—n—c).

Set 5o =s. If 5; is defined, set s;,, = N(s;). As s;,, <s;, we find an r =5 such
thats, =u <s,_;. Nowwesetv, =i, , andw,=1i,  ,—n—cforl=k=r.
Since w,=i,—n—c, we get (1.3) from i, —n —c = H. Furthermore
Virmi—wWie=n+cforl =k =r—1andv, =i, =i, hence (1.4) follows from
(2.2), since r =s and w, = i, — n — c¢. Finally for 1 = k =< r there is a closed

path D1D2' * 'D;DlDz‘ .. Such that

(2.3) We—W+n=Il=w,—v,+n+2
and
(2.4) ¥(D,) =¥(C,,;) forl=<j=w,—v,+n

since we+n+c= iS:-k and Vi = isr—k+l = l.N(j-’_k).
By (2.4) the path D,\D,- - -D,,_,, ., is a possible candidate to be assigned to
(T"(x), w, — v + n), which gives

(2.5)  d(T(x), W — v, THX), W = Vi, ) =n + 1 — (W, — v + )

since D,,_y+n+1Dw—y4n+2° + Dy is a path of length [ — (w, — v, + n) from
D, _, - ,t0D.By(23)wegetn +1—(w, — v, +n)=n + 2c,and by (2.1) we

getn+2c=e(ly —im_—n—-cyform=s,_;,sinces,_, =u,if k=1. As
Nm)y=m —1, we get n +2¢ S €l — N — ¢ — Iym) = (W, — V), and (1.5)
follows from (2.5). O

We conclude §2 with two examples. First consider the case where € is finite.
This includes all topologically transitive finite type subshifts and is essentially
the case cosidered in [1] and [10]. For every path of infinite length in € there is
a CE €, which occurs infinitely often in this path, as € is finite. If D is a
successor of C, we get (i) of Lemma 1 with this D. Hence (i) of Lemma 1 holds
for all paths.

The second example we consider is the B-shift, whose set of invariant
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measures is investigated in [11]. Choose n €N such that n <f =n + 1, set
S={0,1,...,n}) and let eee;---ESN be the B-expansion of 1. If
e€;, .64, -+ is periodic for some i or if there is an i with ¢; =0 forall j = i,
then the B-shift can be considered as a finite type subshift. Otherwise set
€={E,...,E,}U{4;:i=1} and insert arrows from 4, to 4;,, fori = 1,
from E;to E;for 1 =i, j = n, from E; to 4, for 1 =i = n and from 4; to E; for
I=j<eand izl fWE)=i—1forl=i=nand ¥(4,)=e¢ forizl,
then € and ¥ define a shift space as described at the beginning of §2, which is
the B-shift (cf. [4]). As ¢, > O for infinitely many i, there are infinitely many 4,,
which have E, as successor. If C,C,- - - is a path in ¢, then either it contains
some E; infinitely often and we have (i) of Lemma 1 as above, or there are j and
k with C;,; = A, for i 2 0 and C,C,- - - contains infinitely many elements,
which have E, as successor. This is again (i) of Lemma 1.

§3. A property implied by specification
In this section we prove

THEOREM 1. Suppose the dynamical system (X, T) has the specification
property. Let U be a nonempty open subset of M(X, T) and let V be a nonempty
open subset of X. Then there is a periodic point z€V with m,€ U.

The proof of Theorem 1 is adapted from [1]: For the open subset U of
M(X, T) we find a u€EM(X, T), an >0 and a finite subset # of C(X, R),
such that

Wu, F,n):= (vEMX,T): |[ fdu—[ fdvi<nvfeF}CU.

Set F =max{ || f||.: fEF}, sete = n/(10F + 3) and choose 6 >0and wEX
such that

3.1 dist(x, y)<d= | f(x) — f¥)| <e VIEF

and such that {x € X: dist(x, w)<d} C V.

Set S; fix) = Z{Z§ AT"x ). By the ergodic theorem there is a subset Q of X
with #(Q) = 1 such that for every f€ # there is an f* € L} with [ f*du = [ fdu
and (1/))S; f(x)— f*(x) for all x€Q. Since || f* ||, = | fllo = F, we find a
finite partition {Qy, O, . .., @, } of Q such that f* | Q; has oscillation <¢ for
1 =i Z=nandforall fE#. Choose x; €EQ;. Then

S Q) f*) - [ fdu| <& forall EF.
i=1



Vol. 59, 1987 INVARIANT MEASURES 71
We can approximate u(Q;) by ¢; €Q such that for all fEF

(32) ffii= 3 g.f*ee)| <e and 3 g=1.

i=1

Next choose H such that

1
‘—_ij(xi) —f*(x,)' <e¢ forj=H, forl=i=n, andforall fEF.
J

We apply the specification property to x;, where | =i < n, usinge >0, >0
and H as above. For every i we get an integer r =r; and integers v;, w; for
[Sj=rwithwy=0=y,<w =v,<w,=--. Zv, <w,such that(1.3), (1.4)
and (1.5) hold. Set x; = T"(x;), m; = w; — v;and k; = 2/_, m;;. Then we have
the following estimations:

fo) =~ 58 fix)| SA+B+C

k}'j=l

where

<& by(l.3),

1
S¥x) —— Sw,f(xi)
wr

1 1!
B: — 8, flx;)—— > Sm,-,f(xij) 2 2 f(T (
w, W,j=l Wlj=11= Wi—1
é—l—F Y(v,—w_)=<eF by(l4),
W, j=1
1 r
C:= z S f(xu)__ 2 Sm,,f(xy) — ——\F Z mij
Wy j=1 kij=1 ", =1
r _ki |
Al e L S —w O seF by (L4)
eri Wei=1
Using Z7_, ¢; = 1 (cf. (3.2)) this gives for all fEF
* N ql 2 <
(3.3) S *(x;) E T S, fxy)| S €(2F + 1).
i=1Rjj=1

For the next step set D = max d(x, I, y, m, §), where the maximum 1is taken
over all (x, ), ¥, m)E{(x;, my),(w,1): 1=si=n,1=j=r}. Fix Kz DJe.
Since g; EQ, we find integers ¢ and ¢; such that g;,/k; = ¢;/cfor 1 =i = n. Now
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we apply the definition of d to the following orbit segments: Set ¢t = K 2", c.r..
Set (v, o) = (w, 1) and then set

(y,', li)=(x1,-, mlj) fOI‘KCl(j— 1)<l éKClj and 1 §jér1,
(y,‘, 1‘) = (ij, mzj) fOI‘ Kclrl + KCZ(i - 1)<l é Kclrl + Kch and 1 §] § rz

and so on until

n—1 n—1
i L) = (x,, my) forK ¥ c,r,+Kc,( —1)<i=K Y c,r, +Kc,j

s=1 s=1
and 1=j=r,.

By defmition of (y;, ;) for 1 =i =t and of ¢; and c we get

(3.4) 5 Z S S fo)= 3 & 2 Sn f(x,,)—— 2 S, 1O).

i=1K;j=1 i=1Cj=
Using also (3.2) and the definition of k; we get

(3.5) Ke=Ke S =K cki=K3 3 cmy= 21
i=1

i=1 i=1j=1
Furthermore the definition of D implies that
(3.6) dyi b, Vs v, 0) =D for0=i=¢

where (V, 41, L +1) = (0o, o)
By the definition of d there are a periodic point z € X and integers u#, =0,

Uy oo, Uy, Uy =p with T?(z) =z and u; + [, £ u;,, for 0 =i = ¢ such that
(1.1) and (1.2) hold. By (1.5) and the definition of (y;, /;) for 1 =i = t we have
AW by yien L, 0)=éel,ifi #0and if i # K2t ¢, + jo,K where 1 =h =
nand 1 £j < r,, thatisif (y;, ;) = (Vi1 1, [;+1). Counting the number of these i’s
and using (3.6), (3.2), [, =1 = D and the definitions of /;, k;, K, ¢; and ¢ we get
from (1.1) that

n

lo+é(u,+|—u,—l,)§D+(1+ir,)D-l—Z Z(CK l)smu

i=0 i=1j=1

(2+}": 5 ,,> + 2 (cK — 1)ek;

i=1j=1

2+ £ k)0,

IA

cKek;

1

lIM:
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§<2+ > c,k,~>D +eK ¥ ck;

i=1 i=]

= (2 +2 i c,k,») ek

i=]

= <2c +2c Y q,-> eK

i1

= 4ceK.

Hence we have shown (remark that p =y, )

3.7

{
p— Y I, =4ekK.

i=]

Now we get the following estimations:

where

1
1 K{z $.J0) = 8,12

t
)
CN =]

toutl—1

,f@,)—c—z Y AT7z)

1 1 j=u

-1

S ATy — (T*z)]

j=0

1 t
<— ¥ L& by(l.2)and (3.1)
CK i=1

by (3.5),
1 t u,.+1—l ) 1

67(2 2 f(T2) =~ 5,1(2)
! u+1 1

3 2 A(Tz)

1 t
cK (p i§|

=4eF  by(3.7),

=A+B+C

73
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1 1
C:= ‘—-—Spf(z) -=-8,/(z)
cK 4

1
=

1
= —-——‘pF
K p

F
=—|p—cK
cxlp I
F t
= - li b 3.5
CK(p i§1 > Y ( )
=4¢F by (3.7).

This together gives for all f€ F

(3.8) =(8F + 1)e.

1! 1
- E _Spf(z)
cK i< p

Now we put (3.2), (3.3) and (3.8) together, where we use (3.4) and get for all
fe#F

1jfdu—iSpf(z) <(10F + 3)e = 1.

This implies that m, € W(u, #, n) C U. Furthermore dist(z, w) < d by (1.2),
since we have chosen (y,, [;)) = (w, 1). Hence z € V by the choice of §. This
proves Theorem 1.

§4. Unimodal and monotonic mod 1 transformations

We summarize first some results which are shown in [2] and [3]. Let (X, T)
be a piecewise monotonic dynamical system as introduced in [3], that is, the
totally ordered set X has a finite partition & into closed-open intervals such
that T | Z is monotone and 7(Z) is again an interval for all ZE€ &. If one has a
piecewise monotonic map 7 on [0, 1], i.e. there are points ¢, =0<¢; < -+ - <
¢, =1suchthat T |(c,-, ¢;+1) 1S continuous and monotone for 0 =i <n, one
has to substitute all y €(0, 1) with T*(y) = ¢, for some i and some k = 0 by two
points y — and y + and to extend 7 continuously with respect to the order
topology, in order to get a piecewise monotonic dynamical system as defined
above. These countably many points, which are added, can contain only
finitely many periodic points, so that the validity of the assertion of Theorem 1
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for an invariant subset of ([0, 1], T) with no isolated points is not affected by
this construction. We number the elements of & according to their order in X
suchthat & ={Z,, Z,,...,Z,}and Z; = [¢;_, +, ¢; — ]. The symbolic expan-
sion ¢: X — SN, where S = {1, 2, ..., n} is defined as

@(x) =X, X,X3- -+,  where x; is such that 7" " '(x)EZ,..

Since the elements of & are closed, Y:= @(X) C SN is closed. Furthermore
¢ oT =0-¢. Hence Y is g-invariant and (Y, o) is a shift space. If & is a
generator then (X, T) and (Y, o) are topologically isomorphic. Hence it
suffices to show the specification property for topologically transitive subsets
@(L) of (Y, o), where L is one of the topologically transitive subsets of (X, T)
described in the introduction. If & is not a generator, then ¢ collapses certain
intervals to single points. But one easily shows that the assertion of Theorem 1
holds for a topologically transitive subset L of (X, T), if it holds for the
corresponding topologically transitive subset L' := ¢(L) of (Y, g), since for
every ¢ > 0 there are only finitely many periodic points z € Y such that the
interval ¢ ~'({z}) has length > 4. So it suffices also in the case, where & is not
a generator, to consider (Y, ¢) instead of (X, T').

For a piecewise monotonic dynamical system (X, T') there exists an oriented
graph 2 and a map ¥: 2 — S such that Y is the set of all W(C))¥(C))- - -,
where C,C,- - - is a path in 2. (In some of the papers we cite, the elements of S
are not assigned to the elements of %, but to the arrows in %. This makes no
difference.) For a topologically transitive subset L’ of ¥ with positive entropy,
which corresponds to one of the topologically transitive subsets L of (X, T)
considered in the introduction, there 1s an irreducible subset € of 2, such that
L’ is the set of all W(C,)¥(C,) - - -, where C,C,- - - is a path in €. Irreducibility
of € means here, that for all C, D € € there is a path from € to D and that
every subset of & containing € strictly does not have this property (cf.
theorem 11 of {3]). Hence in order to prove Theorem 2, it suffices to show that
every path in € satisfies either (i) or (ii) of Lemma 1, where € is an irreducible
subset of the oriented graph 2 of one of the transformations considered in
Theorem 2. We do this in the rest of this section.

By Theorem | of [6], the oriented graph £ of a unimodal map is either finite,
a case considered at the end of §2, or 2 = {4;:i = 1} and there is a sequence
(r;)iz, of integers = 1 with r, = 1 such that we have the following arrows in 2,
where R, =r +r+---+1r;

4.1) A=A, forizl, Ag—A, forjz=1.
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Let eje,- - - €{1, 2}N be the symbolic expansion ¢(1) of 1. Set \¥(4;) = ¢; for
i = 1. This gives then the shift space (Y, ) (cf. [6]). We need two more facts
about the sequence (r;);», (cf. (2.3) of [6] and lemma 1 of [5]). If k = 1 then

(42) CR+1+j = € forl§j§rk+1_l
and if we set R, =0, we have for | = 1 that
(4.3) thereisa P(i) withr, =Rp;,+1 and O0=P(G)=i-1.

Now we consider an irreducible subset € of 2. By (4.1) thereare u <v =
such that € ={4;:u =i <v}. If v<oc then € is finite, a case we have
considered at the end of §2. Hence we assume v = oc. Then by (4.1) there is a
path from every D € & to €. By definition of irreducibility, we get for D € @
that

4.4) if there is a path from € to Dthen DE €.

We apply Lemma 1. To this end let C,C,--- be a path in €. Choose
Ig<iy<i;<--- such that C;, C;, ... are all elements of {4g:j = 1}, which
occur in C,C,- -+ . By (4.1) and (4.3), for every k there is a j such that
Ci+1Cir27 Gy, is Api1Agsr-++Ag,,. In particular, iy —i=r. If
Iy 41— i does not tend to oo, then there is a tEN with i, — i, =t for
infinitely many k. But then A4, is a successor of C,,, = A , for these infinitely
many k by (4.1) since r; ., = t. By (4.4) we get 4, € 6, and (i) of Lemma 1 holds
with D = 4,.

Therefore, if (i) of Lemma 1 does not hold, we have i, ., — i, — oo for k — co.
We shall show that for every j with A, €% there is a closed path

D\D,---D,, DD, in € with
4.5) W(D,) ="¥Y(Ag+14+m) forl=m=r,,—1

As for every k there is a j with C,_,,C,,_ 43+ C;, = Ag12dg 13- - - Ag,, and
Ag,,, = C, € %, this gives (ii) of Lemma 1 for ¢ = |, l=riy1, N(k)=k — 1 for
all k, and for the sequence (i, + 1), instead of (i;)xo-

It remains to show (4.5). Set u = P(j + 1), thatis, r;,, = R, + 1 by (4.3), and
set DD, --D,, =Agp 2 Ap, A, *Ar+1- We have r,,, =R, +1 by
(4.3). Hence D\D,- - -D, DD, - - is a closed path by (4.1), which is in € by
(4.4), since A, ,, = Ag 4, is a successor of Az ,, € € (cf. (4.1)) and hence there is
a path from € to every D;. Furthermore, by definition of ¥ and by (4.2) we get
Y(Ar s14m)=€n for 1=m=r,,,—1 and ¥4,)=e, for r,,,=Em=
R,+1=r;,,. Hence ¥(D,)=e, for 1=m =r;,,. Similarly one gets
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W(Ag;+1+m) =€ for 1 =m =r;,, — 1 and hence (4.5) follows. This finishes
the proof of Theorem 2 for unimodel maps.

Now we consider the map T(x) = f(x) mod 1 on [0, 1), where f: [0, 1)—Ris
inceasing, f(0)€[0, 1) and f(1 —)E(1, 2]. In this case the shiftspace (Y, o)
introduced above is determined by a = a,a,a;- - - = ¢(0)and b = b,b,b;- - - =
o(1 —) (cf. (1.2) of [9]). We can exclude that *a = b or that ¢*b = a for some
k.If 6*a = b, we cancel from (Y, o) the set U=, 6%{a}, which is wandering
except the orbit of a4, if a is periodic. In this case the orbit of a is isolated (cf.
Lemma 8 of [9]). Hence we have not changed the topologically transitive
subsets L, which we consider. By this we get a shiftspace (Y, o) of the same
form as (Y, o) determined by

a =aa, - a_,2a,a;," - a_2a,a,- -+ and b'=b.

Similar arguments apply if 6*b = a. assuming g“a # b and o*b + a for all k, by
theorem 1 of [9] the oriented graph % is given by {4;, B;: i = 1}, and there are
sequences (7;);>, and (s;),>, of integers = 1, such that we have the following
arrows in &, where we set R, =r +r+ --- +rand §;=s5,+s5+ --- + ;.

A— Ay B— By, forizl,

(4.6) Ay

J

—B,, Bg—A, forjz]l,

The shift space (Y, g) is then given by ¥: 2 — {1, 2}, where
4.7 Y(4)=a, ¥YB)=b forizl.

By (1.3) and (1.4) of [9] we know forj = 1

ag14i=b;  forl1=j=r, —1,
4.8 .
( ) bsi+l+l'=a,' f0r1§]§5j+1_1.
Fori = 1, lemma 1 of [7] says, where we set Ry =S, =0,

thereisa P(i)= 0 with r; = Sp;, + 1,
4.9) . . .
thereisa Q(i)= 0 with s; = Ry + 1.

The irreducible subsets € of 2 are investigated in [9]. Six cases are
considered there. Cases (b) and (d) occur only if o“a = b or 6*b = a for some k,
a case which we can exclude. In cases (c), (¢) and (f), 2 has only finite
irreducible subsets, which we have already considered in §2. So case (a)
remains. In this case there is only one infinite €, for which there are u, vEN
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such that € = {4;, Bi: i Z u, j = v}. For this € we get for D € 2 in the same
way as for unimodel maps that

4.10) if there is a path from €to Dthen DE €.

Now we can show the assumptions of Lemma 1. To this end let C,C,- - - be
a path in 4. Choose iy <<i, <--- such that C;, C,, ... are all elements of
{Ag,, Bs: j = 1}, which occur in C,C,- - -. By (4.6) and (4.9), for every k there is
a j such that C,,,Cyiy+-+C,,, 1is either Ag,1Ag2---Ag,, OF
Bs, \Bg12-+ * Bs,, . Inparticular iy — fe =1y 0r hpyy — b = 8540 iy —
does not tend to infinity, then there is a t EN with i, ., — i, = ¢ for infinitely
many k. Then there are infinitely many k such that i, ., — i =r;,, =1 (or
Ir+1 — I = 5;+, = t) and hence by (4.6) B, (or 4,) is a successor of C;,, = Ag,

(or C,,, = Bg,,) for these infinitely many k. By (4.10), B, € € (or 4, € ¢) and
(i) of Lemma 1 holds with D = B, (or D = A4,).

Therefore, if (i) of Lemma 1 does not hold, we have i, — i, _, — c0. Suppose
Ci..+1Ci_i+2° - C, = Ap . Ap42° + *Ag,,. Ifitis B \Bs ., - - Bs,,, the proofis
analogous. We shall find a closed path D\D,---D,D\D,- - in € such that

either

4.11) [I=r,, and Y(D,)=Y(Ag+1+m) forl=m<r,,
or

(4.12) [=R;,;+1 and Y¥(D,)=Y(4,) forl=m=R;,,.

We show that then (ii) of Lemma 1 holds for the sequence (i; + 1), >, instead of
(i)kz1 and with c =1+ R,, if C;y =Ag 4y, and with c =1+ 8, if G, =
Bg, .. If (4.11) holds, we set N(k) = k — 1 and get (ii) of Lemma | from (4.11),
asc =l and l = r;. = iy — iy_,. Now assume that (4.12) holds. We consider
first the case where an N(k) =< k — 1 exists such that

Cik—m—|+l e Cik-m = AR/-...+1. . '14&._””’l for 0 =m= k - N(k) e 2,
Ciw+1° " *Civgyrr = Bs,+17+ * Bs,,,  for some n.
AS Ag . viist1 = Cipni+1 18 @ successor of Bs,  =C,, ., We get S, =

R _iingw+2t 1bY (4.6). As¥(Bs, 4 14m) =bs, 4 14m = am =¥ (4p) forl=m=
Sp+1— 1 by (4.7) and (4.8), we get by (4.12) that ¥(D,,) = ¥(C,,,,+1+m) fOr
1=m =R, =i, — ing— 1. This implies (ii) of Lemma 1, as ¢ = 1. That
N(k) does not exist, means that j = k — 1 and that

Ci..,rv+C,

ik-m

=AR,mt1"* AR s forO=m=k-—1.
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In this case we set N(k) = 0 and use the closed path
DRj—k+|+1. : .DRj+l+lDl. DR; k+|DRj—k+l+l. vt

Then (4.12) implies (ii) of Lemma 1,as C; ;= Adg,_,,, +1 81Vesc =R, ;. + 1,
as!/=R;,;+1,and as iy — iygy =l —lp=Rj41 — R;_x 41

It remains to show the existence of a closed path D\D,- . -D,D,D,--- in €
such that either (4.11) or (4.12) holds. We suppose first that thereisat = j + 1

with
(4.13) Viem =ity forl=m=t—j and r <ri

and show that (4.11) holds. Set n = Q(P(?)), that is, spiy = 1 + R, by (4.9). By
lemma 2 of [8] and by (4.13) we have r, ., =1, <r;;, =r,. Set

=rj+1=r, and D]"'D[——'AR"+1"'AR"+IB "B,’_l.

.
Tn+l

Then DD, - - D\D\D,- - - is a closed path by (4.6), as r, — 1 = Sp, (cf. (4.9)), as
R, +1=spy,andasr,,, =r, — 1. By (4.6) thereisa path from 4y, =C, €%
todg, ast+1>j+ 1,and B, isasuccessorof Ap .Sincer,  =r . =1, —
1, thereisan mwith 1 =m =/and B, = D,,. Hence there is a path from € to
one and hence to all D,. By (4.10) we get D, € € for all i. Now we show (4.11),
that is, Y(D,)=%W(4gii+n) for 1=m<r;,,. This follows from
WY(Ar,+1+m) = Ar,4m+1=bm for 1 =m =r,,, — 1, which holds by (4.7) and
(4.8), from ¥(B,,)="b,, for r,., =m <r,=r;,,, which holds by (4.7), and
from W(Ag s 14+m) = ag414m = b, for 1 =m <r;,,, which holds by (4.7) and
(4.8).
Now we suppose that (4.13) does not hold. Set n = P(j + 1) and suppose

Spz1+ R, Ifs,.,>1+R;,,, the requirements of Lemma 3 of [8] are
satisfied using also the contrary of (4.13). If s,,,=1+R;,,, that is,
O(n + 1)=j + 1, then P(Q(n + 1)) = n by definition of n. By lemma 2 of [8],
thereisau = oo with s, ,,;, =8, forl i <wuands,,,,, > Sy4. if U < co.
Together with the contrary of (4.13) we get again the requirements of lemma 3
of [8]. Hence, if 5,,,2 1+ R;,,, this lemma implies that r;,;, Zr;,, and
Sp+i = S,4 for all i = 1. Then, by (4.6), there is no arrow from €' :=
{4, B iZR;,,+1,mz S, +1} to 4\ %¢'. Furthermore Az, =C,€
€\ €', hence ¢\ € + J. This contradicts the irreducibility of €. Hence
Sny1 <1+ R;,,, which implies s,,, =1+ R; by (4.9). Now we can show
(4.12). Set

1= 1 +Rj+1 and DIDZ' . 'D[ =BS,,+2. . 'BanA_‘."H' . .ARj+lB’j+l'
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Then D\D,- - -D\D\D,- - - is a closed path, as s, =1+ R, =R;;,and n =
PG +1), that is, r;,; =1+ S, by (4.9). By (4.10), this path is in %, as it
contains A ,, = C;, € €. It remains to show that ¥(D,,) = ¥(4,,) for | =m
R;,,. This follows from W(Bs,im+1)=bs,sm+1=am =¥(4,) for 1 =m
S,+1 — 1, which holds by (4.7) and (4.8). This completes the proof of (4.12) and
also the proof of Theorem 2.

IA 1A
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